Operation	Non-tilted cutter	Tilted cutter (10°)
Semi-finishing a_p – 2 mm (0.079 inch) The speed can be further increased by approx. 75% due to the shallow cut and short engagement time:	$D_c = 10 \text{ mm } (0.394 \text{ inch})$ $D_{cap} = 8 \text{ mm } (0.315 \text{ inch})$	D_c = 10 mm (0.394 inch) D_{cap} = 8.9 mm (0.350 inch)
v _c – 300 m/min (984 ft/min)	$v_c = 300 \text{ m/min (984 ft/min)}$ n = 11,940 rpm	v _c = 300 m/min (984 ft/min) n = 10,700 rpm
Feed per tooth, f_z , is the same for the both non-tilted and the tilted cutter, but the effective no. of	$h_{\text{ex}} = 0.08 \text{ mm } (0.003 \text{ inch})$ $f_z = 0.12 \text{ mm/tooth } (0.005 \text{ in/z})$	$h_{\rm ex}$ = 0.08 mm (0.003 inch)

edges, Z_c , differs near the center as described on the previous page.	$z_c = 2$ $f_n = 0.24 \text{ mm/r } (0.009 \text{ in/r})$	$f_z = 0.12 \text{ mm/tooth}$ (0.005 in/z) $z_c = 4$ $f_n = 0.48 \text{ mm/r}$ (0.019 in/r)
	$v_f = 2,860 \text{ mm/min (113 in/min)}$	
		v _f =5,100 mm/min (201 in/min)
Super-finishing a_e – 0.1 mm The cutting speed can be increased by a factor of 3–5 due to the extremely short contact time:	A non-tilted cutter is not recommended for super-finishing	D_c = 10 mm (0.394 inch) D_{cap} = 4.4 mm (0.173 inch)

 $v_c - 5 * 170 - 850 \text{ m/min} (557 - 2,789 \text{ ft/min})$

 $v_c = 850 \text{ m/min } (2,789 \text{ ft/min})$ n = 61,100 rpm

Note: In super-finishing, a two-tooth cutter $z_n = 2$, should be used to minimize the run-out. With this extremely small a_p , the f_z will be limited by the surface finish demands. Therefore, h_{ex} must be disregarded. A good rule of thumb in super-finishing is to use approx. the same f_z as the a_e .

 $h_{\rm ex} = 0.02 \, {\rm mm} \, (0.0008 \, {\rm inch})$ $f_z = 0.12 \, {\rm mm/tooth}$ $(0.005 \, {\rm in/z})$ $z_{\rm c} = 2$ $f_{\rm n} = 0.24 \, {\rm mm/r} \, (0.009 \, {\rm in/r})$

 $f_z - 0.12 \text{ mm/z} (0.005 \text{ in/z})$

 $v_f = 14,600 \text{ mm/min}$ (575 in/min)